
-A188 621 PARTS-R-US(U) CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT in1
OF COMPUTER SCIENCE E BRUNVAND DEC 87 CIU-CS-7-i19

UNCLSSIIEDAFUAL-TR-87-i17 FIUiS-84-C-i20 FG91 H

SEEEEEEEEEEoi

I hm

1,

-4.
.4.'
-- 4.
4~. -,

.4.
.4.-

.4.

- *4~

.4..

14.~~

'4,

-4
~d*.

-4,..

I,..
I,.

~

a~ 136III ~.. 1,40 IIIkA

II iiIII'. GBI~8'I 1.25 1.4 11111 1.6
= III ____________ 11111-

4,

0

01

w

.4'

04

PHOTOGRAPH THIS SHEET

(0 LEVEL INVENTORY

00

00

DOCUMENT IDENTIFICATION

DISTRIBUTION STATEMENT

, \C(I SSlO(), IiR

)1 It I.\ B

t N UNO %'
It sill ICAl= 0T

0.: kiIL \11il I[F, CODEIS

- I) - V \11 AND OR SPFCIAL

DATE ACCESSIONED

* I)ISTRIBUT:ON STAMP

__-___DATE RETURNED

* o05 098

DATLI RECEIVED IN DTIC REGISTERED OR CERTIFIED NO.

PHOTOGRAPH THIS SHEET AND RE tURN TO DTIC-DDAC

"C DTIC FORM 70A DOCUMENT PROCESSING SHEET PREVIOUS EDITION MAY BE USED UNTIL
DEC 83 STOCK IS EXHAUSTED.

AFVAL-TR-87-1170

(0 PARTS-R-JS

00 Erik Brunvand

Carnegie-Mellon University

I Computer Science Department
Pittsburgh, PA 15213-3890

December 1987

Interim

d_.

Approved for Public Release; Distribution is Unlimited

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND

aWRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

I 4

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection witb a definitely Government-related
procurement, the United States Goiernnent incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any manner construed, as licersing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

- This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

,-. This technical report has been reviewed and is approved for publication.

C• LKIRA M. HOPPER RICHRD C. JONES

Project Enzineer Ch, Advanced Systems Research Gp
Information Processing Technology Br

FOP THE COMMANDER

EDWARD L. GLIATTI

Ch, Information Processing Technology Br

Systems Avionics Div

.4%

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify AFWAL/AAAT Wright-Patterson AFB, OH 45433-6543 to help us maintain

%' a current mailing list.

Copies of this report should not be returned unless return is required by
security corsiderations, contractual obligations, or notice on a specific
document.

0"

* . ~~> *- * *~ *~W-

Unclassified
SEC,_jRY CLASS r CA tON O

:
"r' S PACE

SForrm Approved

REPORT DOCUMENTATION PAGE OMB No 0704-0788

!a REPOR- SEC.R -Y CLASS CA,ON 1b RESTRCTiE MAR. N'GS

Unclassified
2a SEC,.RTY CLASS,'CAThON AJTHOR T 3 D:STRiBuTiON 'AVAILAB:LiTY OF REPORTApproved for public release; distribution
2t) DEC.ASS F;CA.O% DCWGRADG SC-ED LE

is unlimited.

4 PERFORM'NG ORGAN Z"A.ON REDOR- NVBERS; 5 MON TORING ORGAN ZAT!ON REPORT NJMBEPS;

CMU-CS-87-119 AF\WAL-TR-87- 1 170

6a NAME OF PERFORM %G ORG-AN ZA',ON 6: 0F; CE SYMBOL 7a NAME OF MONTOR'NG ORGANZAO%
C (if apphcable) Air Force Wrijit Aeronautical Laboratories

Carnegie-Mellon University AL AT-" AIWAL /. ;AAT- 3

6c ADDRESS C/ty State, anr ZIPCode) 7D ADDRESS (City State and ZIP Code)

Computer Science Dept Wright-Patterson AFB OH 45433-6543

Pittsburgh PA 15213-3890

Ba NAM.E 0; :'.D %S CSO C sz. O CE SYMBOL 9 PROCP.;EMEN" INS-RjVENT 'DEN- -C,-AO% NVBER
ORGAN ZAT ON (if applicable)

F33615-84-K-1520

Sc ADDRESS (City State and ZiP Code) 10 SOURCE OF FUNDING N,1 BERS

PROGRAM PROjECT 'ASK WORK uNT
ELEMENT NO NO NO ACCESSON NO

61101E 4976 00 01
1 - -E (include Security C.ass,ficaton)

Parts-R-Us
" 2 PERSOA A,7,4OR S)

Erik Brunvand

13a TYPE OF REPOR j 3b VE COvERED 1 DATE OF REPORT 1 Year, Month, Day) 115 PAGE COUNT

Interim FROM 7 ____ 11 1987 December 43~

6 JP EME NAR O ,%0A0'ON

l 7 COSA- CODES 18 Su;BJECT TERMS (Continue on reverse if necessary and identify by block number)

F.ELD fGROJP S EB-GROjP

'9 ASS-RAC7 (Continue on reverse if necessary and identify by block number)

*I';. !- I;. - L a c1 i1, tL t colltz'is a coliecCon of buildhiii 11o0.1
.t , - r ,iu ricl;(, desiii. The parts contained on tli

.c'I , C 1 7 !,. , L ot L. i I!-. Ij I tandgird commerci:l compont'te, or

c:w ,n ilwd, iiito small l:,,1h,](S thIat :,re part.iciJ1tT
1

y

(-,I a '!ill 1 . 1,0 1S rontrcl circ i -.. There ai e cI'ht d if-
.:t 'F-u t ,,n- If ,z-i-P Us, Each off'rr,;g a diffc;,it rt of

'-' .'! : ':'u, 'lr,,:,,; :F , t r, t 1," 2-ii. "TLe pr {.' c{, ein,-d on t}im ct~ip i.'-

., ',,.: ' , -ti- icall nmodiiu es, trzi itiou selectors, tra,-
I -, a four I']i .'c i Iu al xcIiso:i I .-

:i. , c - ! ol., '-to i', 0 pnba. r.. - c t aLd frmr p]1 ,

..- I 'I, i h'h a :m pt (in cf Pa.t-R- U., an a 1 ; se1 ',

20 D!STR1BUTON AVALABILiTY OF ABSRACT 21 ABSTRACT SECURITY CLASSIFICATION
r. JNC-ASSIr ED UNLMED C3 SAMW AS RPT 0 DTIC USERS Unclassi fied

22a NAME OF RESPONSlBKE .ND vD.jAL 22b TELEPHONE(Inslude Area Code) 22cOFFiCE SYMBOL

Chahira M. Hopper (513) 255-/865 AFWAL/AAAT-3

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE
04 Unclassified

-, .-

LIST OF FIGURES

1. Introduction 4

2. Configurations 4

2.1. C-Elements 5

2.2. Transition Call Modules 12

2.3. Transition Select Modules 14

2.4. Transition Toggle Modules 17

2.5. Transition Arbiter Modules 20

2.6. FIFO Register 25

2.7. Q-Flops ... 26

3. Design and Testing 35

4. Conclusions 38

0 !i1
0,

-. :

-~ TABLE OF CONTENTS

1 Select Pin Settings for Parts-R-Us Configurations 5

2 Pin Assignments of Parts-R-Us....... 5

3 Truth Tables for C-Elements. 6

4 Schematic of an Enabled C-Element 7

5 A C-Type General C-Element Mvodule 7

6 Different Enabled C-elements from C-types 8

7 Different C-elements from C-types. 9

8 A Four-Wire Transition FIFO Cell 10

9 C-Type Configuration 11

10 A Two-Input Transition Call. 13

11 A Call Module Acting as a Calli 14

12 Call Configuration. 15

13 A Two-Way Transition Select Module. 16

14 Selector and Exclusive-Or Combination 16

15 Selector Configuration 18

16 A Two-Way Transition Toggle. 19

17 A Conservative Two-Way Transition Toggle 19

18 Converters for Two and Four Phase Signalling 20

19 Toggle Configuration. 21

20 A Four Phase Mutual Exclusion ("mutex") Element 22

-4.21 A Two-Way Transition Arbiter. 23

.. 22 An Arbiter and a Call 23

23 Arbiter Configuration 24

24 One Bit of Asynchronous Latch 27

-. 25 One Bit of Asynchronous FIFO 28

26 PIFO Register Configuration. 29

27 Original CQ-Flop Timing. 30

2

0N.

LIST OF FIGURES (CON'T)

28 Parts-R-Us Q-F lop Timing 30

29 Q-Flop Sampling Section 31

30 A Four Phase Q-Flop 32

31 A Two Phase Q-Flop. 33

32 Two Phase Q-Flop Timing 34

33 A State Machine Using a Q-Register 34

34 A FIFO Cell Using A Two Phase Q-Flop 35

35 Four Phase Q-Flop Configuration. 36

36 Two Phase Q-Flop Configuration. 37

37 Test Results of the 8/86 Version of Parts-R-Us 39

3

%

1. Introduction

As systems become larger, faster, and more complex, timing problems become more and more
severe. Asynchronous systems may provide major advantages over traditional synchronous systems
by avoiding the difficult problems of clock distribution, clock skew, and tuning that synchronous
systems require. Asynchronous systems may be more versatile because they can adapt to and
take advantage of improved subsystems that operate either faster or more slowly than the parts
they replace and can take advantage of the maximum speed available from each of their parts. For
example, many complicated integrated circuits cannot take advantage of incremental improvements
in the manufacturing process because the timing relationships between parts of the circuit will be
changed. Asynchronous techniques used for VLSI may eliminate this problem and let chips take full
advantage of process improvements without changing the circuit. Asynchronous systems may be
designed as a set of separate parts with simple communication protocols between them. This allows
the designer to compose parts based only on their functionality, not on their timing properties.
Asynchronous systems are a good match for parallel architecturcs since events are ordered by
causal relationships among the elements of the system rather than synchronized to a global clock.
As chip size and transistor count increase, wiring delays on the chip become significant, clock tuning

* "• becomes extremely difficult, and because previously designed modules are not as reusable even the
cost of redesigning an existing chip increases. Thus as chip size and transistor count increase, the

,-7 advantages of asynchrony also increase.

At present, however, asynchronous systems are rare despite the fact that they seem to offer
' - significant advantages over traditional synchronous design in some cases. Asynchronous design is
.., - inconvenient and uneconomical since most commercially available parts are best suited for syn-

chronous design. Because of the unavailability of suitable components, a lack of experience with
such systems, and a lack of a simple, proven design methodology, asynchronous design is considered
too difficult by most designers.

Parts-R-Us is a chip that contains a collection of building blocks for asynchronous circuit design.
The parts contained on the chip are either not available as standard components at all, or are
standard gates combined into small modules that are particularly useful for building this type

p of system. There are eight different configurations of Parts-R-Us, each offering a different set of
asynchronous parts to the user. The parts contained on the chip include: C-elements, transition call
modules, transition selectors, transition toggles, transition arbiters, a four phase mutual exclusion
element, an asynchronous register, two phase Q-registers, and four phase Q-registers.

Parts like the ones used in Parts-R-Us are also described in [6,5,4]. With only a few exceptions
%. these modules use two phase transition sensitive signaling. Parts-R-Us is intended for building

small or medium sized asynchronous control circuits for testing, experimentation, or teaching.
This document is both a description of Parts-R-Us and a user's manual since the pin numbers of
the parts are shown in the diagram of each configuration.

2. Configurations

Each of the configurations of Parts-R-Us offers a different set of parts to the user. The configuration
is chosen by setting the select pins according to Figure 1. Each configuration consists essentially
of one type of part but since some parts are likely to be used in combination with others, extra

"%4
04

Select Parts Description
ABC

000 Four Phase Q-Flops
001 Two Phase Q-Flops
010 Selectors
011 FIFO Register
100 Arbiter and Call
101 C-Types and XOR
110 Call modules
111 Toggle and C-Types

Figure 1: Select Pin Settings for Parts-R-Us Configurations

Pin Number Pin Description
* 1 Vdd

2-9 Shared Output Pins
10 Master Clear*

11-20 Shared Input Pins
.-. 21 GND

22-28 Shared Input Pins
29,30,31 Select A B C

32-40 1Shared Output Pins

Figure 2: Pin Assignments of Parts-R-Us

parts are included in some cases. For each configuration there is a full page figure in this document
showing the parts available, the signal names, and the pin numbers.

Parts-R-Us is implemented in MOSIS 3,u CMOS and packaged in a 40 pin DIP. There are six

pins common to all configurations, leaving 34 pins to be used by the various parts. These 34 pins
are equally divided into input and output pins. The signal assignment of the 40 pins is described
in Figure 2. The signal called Master Clear* in this figure is an active-low signal that clears the
internal state of any parts that can be cleared. Outputs of clearable parts are 0 after a Clear.

2.1. C-Elements

"O Function

Muller C-elements, also known as "last-of" gates, or "rendezvous" elements, are well known to
asynchronous circuit designers. A C-element's output follows the input only after all inputs have
changed to the same value. That is, after all inputs go to 1, the output goes to 1. The output
stays 1 until all the inputs have gone to 0, after which the output goes to 0 and so on.

-5

,..

Enabled
C-Element C-Element

- AB Q,+i ABE Q,±+
A 00 0 XXl Q" A

0 1 Q", 000 0 B

.1 1 100 QET
110 1

Figure 3: Truth Tables for C-Elements

There is also an enabled form of a C-element with an additional enable input, When the enable
-:.' . input is active the circuit behaves as a normal C-element, but if the enable input is not active the

output of the C-element will not respond to changes on the input. Truth tables for regular and
enabled C-elements are shown in Figure 3.

Design

A dynamic inverting C-element can be built from four CMOS transistors. The output node is
pulled up if both signals are low, and down if both signals are high. With any other inputs the
last output value is stored as charge on the capacitive output node. The C-elements on Parts-R-Us
use a circuit like this and add an inverting negative resistance to hold the output at the last value
is was driven to. The circuit is shown in Figure 4. Note that this circuit includes an enable input

-, and an active-low master clear signal. The negative resistance is designed to provide weak drive
that may easily be overdriven by the output of the dynamic C-element. This is done by using long

~. ? narrow transistors to limit current to the output of the negative resistance. Rather than make the
dynamic C-element drive the long gates of the negative resistance, the output is connected to two

• . minimum size transistors in series with the long transistors. When cleared, the outputs of these
C-elements will be forced to 0.

.... Application

A C-element is an example of a simple gate that is not available as a commercially available part,
but that is used by almost all asynchronous circuits. With the exception of the asynchronous
latch described in section 2.6., every part on Parts-R-Us includes a C-element somewhere in its
implementation. Many of these are slightly modified versions of C-elements with or without enables,
with inversions of some inputs, inverted output, or a different number of inputs.

.. Most of the variations on a basic enabled C-element can be built with the addition of a two
input exclusive-or (xor) gate. This combination of gates, shown in Figure 5, will be called a C-type.
Figures 6 and 7 show how a C-type may be used to implement every type of C-element used in the
examples of [51.

6

r *, ~ *

A, weak

B r

weak

Out

Dynamic Negative Resistance

Figure 4: Schematic of an Enabled C-Element

A
BC out

, Figure 5: A C-Type General C-Element Module

.,7

i In
In > _outou

Used in. Transition toggle, 2PT to 2PB converter, 3-wire transition FIFO, Waiton

In
IIn out C

D E 0 u t
El

Used in Transition toggle

A
C out out

-0 A11- C

Used in: Double transition toggle
Output selector

out C
L,.. out

Used in: Double transition toggle

B c -'-out A
C out

Used in: 4-wire transition fifo Vdd
transition arbiter

Figure 6: Different Enabled C-elements from C-types

8

Lal

L-

A1(1) R1(1) R1(0) AI(0)

C0

R2(1) A2(1) A2(0) R2(0)

Figure 8: A Four-Wire Transition FIFO Cell

One simple circuit that can be built from two C-types and an xor gate is a call module. Call
-* modules are described in section 2.2. and can be implemented as shown in Figure 10. This is an

example of explicit use of the xor contained in the C-type.

An example of a circuit that needs two extra xor gates, and uses the C-type to emulate a C-
element with inversion on one input, is the four wire transition FIFO cell shown in Figure 8. A

four wire transition FIFO cell has separate request and acknowledge wires for 0 and 1.

A "waiton" gate is an enabled C-element with only one input. If the enable is asserted then
the output follows the single input, but if the enable 'is not asserted then the output remains in
whatever state it was in. Another way to view this is that if the enable is not asserted then the
waiton will wait until that signal is asserted at which time it will pass the information at the input
to the output. Waitons are often used to hold up a transition until some signal is at a particular
level. For example, a waiton with an active-low enable will hold up transitions on its input until
the enable level is low.

Configuration

* The C-element configuration of Parts-R-Us includes four C-types and is shown in Figure 9. A
C-type is a module that has twice as many inputs as outputs (4 inputs, 2 outputs) so half of the

-, available output pins could go unused. Instead, the unused output pins will be used as alternative
" combinations of the inputs such that other interesting parts can easily be built from the C-types.

The first extra combination connects the outputs from pairs of C-types to the inputs of a simple
two input C-element allowing the C-types to be used as four input C-elements. Going one step
further, the outputs from the new four input C-elements are connected to another simple C-element

10
...

p.8

A r---- out----

B out B

GND

Used in: 4-wire to 3-wire transition converter

A
A -F ouC out

Used in: Quick return linkage VdGND
fifo control
etc....

A
A out B C out
B

Used as a C element GND

A Aou

GND
* Used in. 2 input Call

Figure 7: Different C-elements from C-types

9

* - 23p. Al

2 2 1 0 - B i _ _ _ _ _ 3

8No- A2 U2-03
17 ow B2 _ _

16P 0N 2 X 21 U2-o-5OT

3Pw B3 U3-b

2 Wm 03X3OT-1-3

c 2

28 p. A4 X 9OT

27 Dom B4 X U4_p4

26 Pm 04 OT 0

Bi B
-~-Dl -0.9D2-W8B20D4

* Al A2 AN

Fl - 7 4L -F2 --P- 6

A3 A4* '~ F3m~ --W 5~.. F4 --W 4

Figure 9: C-Type Configuration

4qu

to make an eight input C-element. Since there is still one extra input pin, the last C-element is
actually a three input C-element allowing a nine input C-element to be used by combining all four
C-types and the extra input. Since connecting two inputs of a C-element together has no effect on

the function of the gate, C-elements with all number of inputs from one to nine can be used in this
configuration.

Other extra logic is motivated by the example of a call module as seen in Figure 10. Since only
an extra xor gate is needed to build a call module from two C-types, that extra xor is included
in this configuration. The xor gates for building call modules have outputs labeled D1 and D2 inpFigure 9.

The xor gates with outputs labeled F1, F2, F3 and F4 are designed to work with the C-types

of the same number to implement the four wire transition FIFO shown in Figure 8. Any two
C-types with their associated xor gates can implement a four wire transition FIFO cell. Actually,
this doesn't work quite work as well as planned. Since the gates are exclusive-or, and the C-types
are enabled low, extra inverters are needed to implement the circuit in Figure 8. The gates on
Parts-R-Us really should have been exclusive-nor gates.

2.2. Transition Call Modules

Function

A transition call module can be thought of as the hardware equivalent of a subroutine call. In
response to a request on either of the two request lines R1 or R2, the call module starts a "sub-
routine" with the Rs signal. When the subprocess completes and acknowledges with As, the call
module acknowledges the appropriate requester on Al or A2. It is the responsibility of the call
module to remember which of Ri or R2 made the request so that the acknowledge gets routed
to the correct requester. A full request/acknowledge transaction must complete before either side
may request again. It is a mistake to assert more than one request concurrently.

It is also possible to view these call modules as decision-wait modules by ignoring the Rs signal.
A decision-wait module will hold up a transition on one of its inputs until a transition arrives on
As, then route the signal to the appropriate acknowledge.

Design

An implementation of a two input call module is shown in Figure 10. As noted in section 2.1. this

circuit can be built from two C-types and an extra xor gate. However, because the C-elements used
in a call are not enabled, regular non-enabled C-elements are used to implement call modules on

. Parts-R-Us. Since the C-elements clear their outputs to 0 after a Clear signal, call modules need
no other clear input.

A call module remembers who made the request by using the storage inherent in a C-element.
When a request is made on RI or R2 one input of the appropriate A1 or A 2 C-element is changed.
When the subroutine acknowledge As occurs it changes the other input of the C-element to match,
thus causing a transition on the correct acknowledge signal. The subroutine acknowledge also resets

d •the other C-element to the state it was in before the transaction. The call module is now ready to

12

4

R1-

R:S AS
IR"

R2 A2

Figure 10: A Two-Input Transition Call

accept another request on either R1 or R2.

Application

Call modules are usually thought of as providing a mechanism for implementing hardware sub-
routine calls. They can be used whenever a process or circuit is used more than once or by more
than one requester. If, for example, the same input port must be queried for data in four different
states of the control, a four-way call module with the input port as the subroutine process would
let each state that needs input simply request to that call module to query for new data. The main
restriction on the use of call modules is that requests to a call must not be concurrent.

Simple two-way call modules can be cascaded to make larger call modules by letting the sub-
routine process of a two-way call module be the inputs to another two-way call module. A tree of
call modules can be built up in this manner to provide many callers with access to the same shared
process.

When a call module is cleared, all outputs will be driven to 0 and the next action must occur

at one of the two user request lines RI or R2. There is a variant of a call known as a calli that
is used, in some sense, backwards. After a Clear the outputs of a calli will be pulled to 0 but the
first action after a Clear is expected to be on the subroutine acknowledge As. This will cause a
transition on the Al signal. From this point on the calli acts like a standard call module. The
initial condition is the only real difference between call and calli modules. You can actually make
a call into a calli by adding an inverter to the request input you want to be acknowledged first
after a Clear, and an inverter to the subroutine request as shown in Figure 11. This fools the call
into thinking that there is already a pending request that needs acknowledgment and so the first
As event results in the proper acknowledge signal.

*.

,, Configuration

This configuration, shown in Figure 12, consists only of call modules. It contains four two-way call
modules and one four-way call. All of the call modules are normal calls. There are no calli modules
since they can be easily constructed with the addition of two inverters.

13

I%

R1 Al
Call

l1n

R2 A2

ASRS

Figure 11: A Call Module Acting as a Calli

2.3. Transition Select Modules

5. Function

A two-way transition select module will steer a transition from its transition input to either output
depending on the value of the select input. The select input is a level rather than a transition and
must meet the constraints that the select input be valid before a transition occurs on the input
and the transition must appear at the selected output before the select input can be changed.

Design

* A circuit for a two-way Selector is shown in Figure 13. The select input enables one of the C-
elements to steer the incoming transition to that output. The outputs are fed back to exclusive-or
gates to make sure the output transitions happen correctly. That is, when an input transition

,4% occurs, the feedback from the selected C-element to the other exclusive-or removes the effect of
the input transition from the unselected channel. Two transitions on the inputs of an exclusive-or
return its output to the same state as before the transitions.

Application

Select modules can be thought of as a hardware implementation of an "if then else" statement in
software. If the select input is high (true), Then steer the transition to the top output Else steer
the transition to the bottom output.

Select modules are often used to enable some process only if some condition is true and simply
to continue otherwise. Used in this way it is handy to have one of the outputs of the selector
attached to an exclusive-or gate. This allows the acknowledge from the process enabled by the
Then part of the construct to be combined with the Else part of the selector and thus acknowledge
the entire construct as shown in Figure 14.

1404"
O-

CaII2a CaII2b

Rl 34g.Ala Rib 19 40 o.Alb0

22 3183R2a A2a R2b 18A2b

ASa IFRSa ASb RSb
20 2 17 3

CaII2c CaII2d

Ric 16 37 Alc Rid 13 34 Ai1d

15123
R2c 15 A2c R2d 12A2d

ASo RSc ASd RS d
14 ii 3 1 32

CaMi

Rie 289 Ale

R2e 2 ~

26 7
M~e ipA3e

R4e 25w A4e

ASe RSe
24 5

Figure 12: Call Configuration

15

9Or

Sel

In

Figure 13: A Two-Way Transition Select Module

Selector

input Acknowledge

* Figure 14: Selector and Exclusive-Or Combination

16

0 04%V

Configuration

The selector configuration, shown in Figure 15, consists of five two-way selectors and one four-way
selector As seen in the figure, four of the two-way selectors have exclusive-or gates on one output
to help implement the structure described in the Application section. The four-way selector is
implemented as a tree of three two-way selectors.

2.4. Transition Toggle Modules

Function

A transition Toggle module accepts transitions at its input, and sends the transition alternately to
its two outputs. After a Clear signal the first input transition will be routed to the OutO output
and subsequent input transitions will be routed to alternate outputs. When a toggle module is
drawn as a circuit element the output that receives the first transition after a clear is noted with
a dot as in Figures 18 and 19.

Design

A circuit for a two way Toggle is shown in Figure 16. An input transition will switch which C-
element is enabled, thus letting a transition out one of the outputs, and in the process set up the
next transition on the input of the C-element that is not enabled.

The circuit in Figure 16 may have a problem if the two C-elements are ever enabled at the same
time. This may happen if the delay through the inverter on the input is significant. In this case
the toggle may oscillate, which in a system that considers each transition to have meaning would
be disastrous. The actual circuit implemented on Parts-R-Us is designed to avoid any possibility
of oscillation by using a two phase non-overlapping signal generator on the input. This circuit,
shown in Figure 17, uses C-elements with active-low enables. The extra circuitry makes sure that
the signals are non-overlapping low so that it is never the case that the two C-elements can be

enabled at the same time.

Application*

Toggle modules are used anytime a circuit needs to cycle between two alternative courses. One
simple example of this is using a toggle module and an exclusive-or gate to convert between two
and four phase signalling. Converters to convert in both directions are shown in Figure 18. It is
also fairly common to see call modules used such that the two users of the call alternate requests

" for use of the shared subroutine. In this case a toggle may be substituted for the call module.

Configuration

The Toggle configuration, Figure 19, includes five two-way toggles. Since a toggle has twice as
- many outputs as inputs, this leaves a lot of input pins to fill. Since C-types have twice as many

17

;'-o

° 3.

4 X-

'440

oub~

.. sela 1

0se lb

136
XcOutlc 13dSe~

seicD
-- 3

se lse1d

seele

'99

I n

C Outo

C Outi

Figure 16: A Two-Way Transition Toggle

.j

.t.t

In

*two phase non-overlapping clock toggle

Figure 17: A Conservative Two-Way Transition Toggle

19

R2 R4

2 phase -- 4 Phase

,. ."A 2 -'.T o g g le A 4

R4 T Op R2

4 Phase -11w2 phase

A4
'A2

Figure 18: Converters for Two and Four Phase Signalling

inputs as outputs, they are used to fill up the spaces. Three C-types are included, as well as one
extra C-element combining the outputs of two of the C-types. These are actually the same physical
circuits as the first three C-types from the C-element configuration.

2.5. Transition Arbiter Modules

Function

An arbiter is a module that is used to guarantee mutually exclusive access to some shared or
protected process. If a single user requests access by causing a transition on the R1 or R2 lines,
access will be granted promptly and the shared process will be requested by a transition on the
appropriate G1 or G2 wire. The shared process must declare itself done when it is finished by
causing a transition on the D1 or D2 line and the arbiter then acknowledges the initial requester
by making a transition on the Al or A2 line.

Another way to view this transaction is that a user requests access to a shared resource by
causing a transition on the R1 line. The arbiter grants access with the G1 signal. The original
requester signals that it is finished with the shared resource by making a transition on the Dl line,
and the arbiter acknowledges that done signal with the Al line.

If another user requests access while the first has been granted access but has not yet finished,

the second requester must wait. If more than one user requests access concurrently, one and only
one requester will be granted access to the shared process, and the others must be delayed.

20

9

Togglea Toggleb

26 28 N outOa nb 27 outOb

Togg ec Toggle

26~~N outc 5 ote

Oijtb- outide

23 A

23 mo Al

17Do 8B2

16 60- C2 E2 1 OUT2 -*. 35

14 w A3

C OUT3 -0 4

S 1 2 g.,.C3 OUT3 --b- 33
E3 11

Figure 19: Toggle Configuration

21

A >_ MA

- B MB

GND

Figure 20: A Four Phase Mutual Exclusion ("mutex") Element

Design

In order to make a clean arbitration choice, a four phase mutual exclusion element, or mutex
0.. element, like the one shown in Figure 20 is used. This circuit is essentially a set/reset flip flop

followed by a comparator to tell when the flip flop has been set. The problem is that both A and
B may be asserted at the same time and the flip flop may enter a metastable state. When the flip
flop has decided which way to flip, a flip flop output will go low. The comparator will not let either
pass transistor turn on and pass a signal until the difference between the flip flop outputs is greater

than a transistor threshold, which is a good indication that the flip flop has exited metastability.
When this happens one of the nodes connected to the weak p-type pull-up transistors will be pulled

to ground which asserts the appropriate MA or MB signal.

A two-way transition arbiter can be built easily using this mutual exclusion element. One
circuit is shown in Figure 21. The exclusive-or gate recognizes when there is a request by sensing a
difference between the Rn request and An acknowledge lines. This sends a signal into the mutual
exclusion element. The mutual exclusion element chooses one of the inputs A and B and asserts
the appropriate MA or MB signal. This enables the one-input C-element, or waiton, to let the Gn
grant signal through. When the Dn "done" transition happens, the input to the mutual exclusion
element is lowered and the An acknowledge transition gets through the other waiton.

Application

Arbiters are needed anytime concurrent requests to a single resource must be made. One partic-
ular instance where arbiters are often required is with call modules. Call modules, described in

S section 2.2., allow multiple non-concurrent requests to common processes. Used with an arbiter as

in Figure 22 the requests may now be concurrent.

A 22
%°..

k".

L-PA MA N

Mutex

.1 Figure 21: A Two-Way Transition Arbiter

All 4_ 1A
Rs

G 2 R2As
R2 --- _ _ __ __ _

Dp 2AA

Figure 22: An Arbiter and a Call

23

.-

Arbiter a Arb,!er b

R"a 24 4 2-- la- Gia Rib go Glb

": la 5 23 Da Ab-- 3 20 I

-- R2a 28 8 26 6',,.P - G 2a R2b _7 1W- -G 2b
L -A2a - 9 , ""25

Aago T D2a A2b 25 D2b

Cal2a
Call2b

-. Rcla 6 37,-"
Aa Rc I.s Acl b

Rc21 Ac2a Rc2b 12 33 Ac2b

14
11 32

ASa Sa ASb RSb

P Ring Oscillator Output 38

A 19 Four Phase 40 MA
18 Mutual Exclusion 39

,

",,O,' 17

Sample

Figure 23: Arbiter Configuration

24

04

Configuration

This configuration, shown in Figure 23, includes two two-way transition arbiters and two two-input
call modules since they are often used in combination.

Other bits and pieces included in this configuration are a four phase mutual exclusion element
and a ring oscillator for timing and testing. The mutual exclusion element has a simple sample and

N", hold feature so that the outputs may be sampled at different intervals from concurrent requests to
help determine the metastable exit properties of the circuit. The ring oscillator is a string of 30
two-input C-elements with their gates tied together and an inverter at the end of the string. The
ring will circulate only while the Clear signal is asserted so that no extra activity is going on during
normal operation of Parts-R-Us.

2.6. FIFO Register

K." Function

An asynchronous latch has the usual request and acknowledge signals. A request is a signal to
store the current input of the latch, and when that value is stored a transition is caused on the
acknowledge line. Notice that although the control signals are transitions, the values being stored
in such a latch are level values and must be stable at the time the latch request occurs.

An asynchronous FIFO (first in first out queue) is a sort of a latch that has two request-
acknowledge pairs. One request is from some process to store a new value into the latch, and its
acknowledgment means that the new value has been stored. The other is a request to some other
process that there is new information in the latch, and the acknowledgment means that the other
process is finished with that data. The sequence of operation for a FIFO begins when processi
requests the FIFO to latch new data. The FIFO latches new data, acknowledges that the data is
latched, and causes a transition on the other request line offering this new data to process2. Only
after process2 acknowledges that it is through with thedata will the FIFO honor a request to store
new data into the latch.

Design

The basic cell used to make both latches and FIFOs is shown as the part of the circuit inside the
dotted box in Figure 24. The circuit is essentially two flip flops that each select whether to follow
the input or latch the current input value. The pass gate selected by the X signal on the outputK-:2 of each flip flop determines which one will drive the output of the cell and the enabled inv, -ters
gated with the Y signal determine if the flip flop is following the input or holding a value. The
two flip flops are wired such that if one is following the input, then the other must be latched, and

,. only one of the flip flops may be driving the output at any time.

25

0.,.,, , - - , . -, .. ,% %

Application

The basic cell described in the previous paragraph can be usevd to make :i richronous latch by
connecting the .\'out signal to the Vin signal as soen rin [igure "- A rarositin on the Req line
will first switch the output to the flip flop that is following the irtl,!t and then cause that flip flop
to latch the current value. After this happens the transition is scnt back to the requester as the
Ack signal. The flip flop that was holding the previous value is now following the input ready to
latch that input value when another REq transition occurs.

One way to build asynchronous FIFO from the basic cell is shown in Figure 25. In the quiescent
state there is a connection from D to Q through either the top or bottom flip flop in the basic cell.
A request from the previous FIFO cell on the left, R1, will latch the current input data into one
half of the circuit, start sampling subsequent data on the other half of the circuit, acknowledge that
the data has been latched on A l, and request the next cell on the right to pick up the latched data
with R2 The acknowledgment A2 from the next cell on the right signals that the data has been
consumed, and switches the output to the other half of the circuit so that the new data appears at
the output.

Notice that in order to build a FIFO from the basic cell an extra C-element is required. This
C-element enforces the condition that the process on the right must acknowledge and the process
on the left must have requested before new data can be latched. The inversion on one input of the
C-element, shown as a bubble on one input in Figure 25, initializes the FIFO control so that the
very first time a request comes from the left, new data can be latched.

Configuration

This configuration includes a nine bit wide set of basic cells with common control signals. The
circuit enclosed in dashed lines in Figures 24 and 25 is the cell that is repeated, and the Xin, Xout,
Yin, and Yout signals are shared for all nine cells. By connecting Xout to Yin this configuration
can be used as a nine bit wide asynchronous register.

With the addition of an extra C-element as shown in Figure 25 this can implement a nine bit

wide, one bit deep FIFO. So that the register may be used this way, two C-types are also included

%e% in this configuration as shown in Figure 26.

2.7. Q-Flops

Function

A Q-flop is a module that allows an asynchronous signal to be sampled on request, and generates
an acknowledge only when a reliable data value is available at the output. Since the sampling
circuit may enter a metastable state, the acknowledge must be delayed until the circuit has exited

,.-• metastability and a reliable result is reported. Unlike the asynchronous latch of section 2.6., the
data, being asynchronous with respect to the request, may be changing when the request to sample
the value occurs. Q-flops were first described in [2] to use use four phase signalling and assign a
meaning to every edge of the four-cycle exchange. A timing diagram is shown in Figure 27.

26

04

i~...........

I I

Yin Xout

he 0Y

SDDo Q

Yout Xin

I4 ,Req

Ilo, Ack

, ' Figure 24: One Bit of Asynchronous Latch

. 27

OsV

Rl

Yin XoUt

I.7

D I Y10

IYout Xin

4 A2
Al R

Figure 25: One Bit of Asynchronous FIFO

28

... % 'U

..

Asynchronous Register

D 0 0

0 2 267 02

D5 05
06 06Q

D7
08 08Q

15 5. 2314 0

D2 82 Q

16 , 02l3

OOUT3

Figure 26: FIFO Register Configuration

29

II

Start Sampling Change Outputs

Req

-.

."" Ack

Sampling proceeding Outputs valid
Input Decoupled

Figure 27: Original Q-Flop Timing

Latch current D Clear input stage

Req

Ack

Value latched and stable Input stage clear
and ready to go

Figure 28: Parts-R-Us Q-Flop Timing

Design

The Q-flops implemented on Parts-R-Us, while performing the same basic function of sampling an
asynchronous signal, behave a bit differently than the Q-flops described in [21. The basic Q-flop on
Parts-R-Us is still a four phase device and is broken into two basic units: the sampling stage, and
the output stage. The timing diagram of this type of Q-flop is in Figure 28.

-. The circuit for the sampling stage is shown in Figure 29 and is further broken down into two
parts: the input section and the comparator. The input stage is controlled by two signals C1
and C2 which are generated from a request. If there is no active request then both C1 and C2

are low. This will force the inverter between A and B to "eat its own tail." This will settle the
voltage at both A and B to approximately half of the voltage swing of the inverter. This value

**l also appears at the input of the enabled inverter enabled on C2. The input section will eventuaily
form a flip flop from these two inverters which is now poised right at the metastable state because

-', of the intermediate voltage at the inputs to the inverters. When a request to sample occurs the C1
signal goes high, which routes the current In signal through the AB inverter to the input of the C2
inverter. Then C2 goes high to make the two inverters into a flip flop which latches the current
In value, and also decouples the input from the flip flop. Actually Cl and C2 can be the same
signal as long as C1 changes before, or at least not after, C2. In this case the value that is being

sampled is actually the value stored on the dynamic node on the output of the enabled inverter at

30' ,.
I2

I"- .--.-- "-

'-"- C2

* In

'
"""C 1

B D

'.- -,- ND

Input Section Comparator

Figure 29: Q-Flop Sampling Section

the input.

The comparator connected to the input section flip flop is the same as the one used in the

mutual exclusion element shown in Figure 20. The C and D signals will be held high by the weak
S,~. p-type pull ups until the A and B signals differ by more than a transistor threshold value. Again,

this is a good indication that the flip flop has decided on an output value and the corresponding
.41 comparator output should be pulled low. When the Q-flop is not sampling, the voltage at A and

B will be the same.

Using this Q-flop sampling section it is easy to build a four phase Q-flop by adding an output
stage, and some logic to generate the acknowledge. Shown in Figure 30, the output stage for a four
phase Q-flop is a simple set/reset flip flop with a Clear input. When the input stage has sampled
the input it will pull one of i-- or i-R low, causing the output stage to set or reset. When one

-V of the set or reset signals has gone low, and the output flip flop has agreed on the value, then the
Q-flop acknowledge is asserted. The timing diagram in Figure 28 shows the sequence of control in

this Q-flop.

Four phase Q-flops are controlled by level signals while just about every other part on Parts-R-
Us senses transitions. Luckily, there is an easy way to combine two four phase Q-flops into a single
two phase Q-flop that, while it still samples a level at the input, now operates on transitions as
control signals. A timing diagram for this circuit is shown in Figure 32 and the circuit is shown in
Figure 31. It operates by alternately sampling into the top and bottom four phase Q-flops. When
the request to sample arrives, one of the four phase Q-flops starts sampling, and the other, having
been used the last time, resets its input stage. When the half that is sampling has a valid output
and the half that is Jearing is through clearing, the C-element switches the output to the sampled
side and announces an acknowledge. Thus the two phase Q-flop will sample a new input on every

31

0 2 Req

C2 Cl 02 0

F Os

GND MC

*Note that C1 must occur
prior to (or at least notQ C

4 behind) 02

0-Flo0

Ak

Figure 30: A Four Phase Q-Flop

32

A. Req

.F ig ur.4 h a e 3 1:lo A T w[hs e Q F o
is es-tu l4 p h a se Q -F lo p A

or ou phaseQRo

b..

[0"
Ack

O a a e p Figure 31: A Two Phase Q-Flop

transition of the control input.

~Application

., Q-flops can be used anyplace where an asynchronous signal needs to be sampled. In particular it

'.'. is easy to build state machines with Q-flops that can include asynchronous inputs. A diagram of

such a state machine is shown in Figure 33. This state machine will enter its next state only after
e.. the Q-register has acknowledged that all the outputs are valid, and after a delay that models the

4; delay through the next-state logic. The Q-register in this type of state machine may be either two~or four phase.

-"- One way that the two phase Q-flop can be used is as a FIFO cell in much the same way as

.',-.the FIFO cell in section 2.6.. Notice in Figure 34 how an extra C-element is needed, and that

le the signals exactly match those in Figure 5. The difference is that while the FIFO in Figure 25

L[,,t required that the data be stable before requesting, the Q-flop version may be used in places where

the input data is asynchronous with respect to the input request and sampling is desired.

VI" 33

041

Sample D Sample 0

0 ValidQ Valid

Figure 32: Two Phase Q-Flop Timing

- Q Register

Figure 33: A State Machine Using a Q-Register

34

- - -- - - - -RM a-rn W- .-. W.R W W -

R1 [A2

Req

Din 2-Phase Q-Flop Qout

ACK

A! R

Al R2

Figure 34: A FIFO Cell Using A Two Phase Q-Flop

Configuration
'4

There are two configurations on Parts-R-Us that consist of different types of Q-flops. The four

phase Q-flop configuration includes two Q-registers. These are collections of Q-flops with common
request inputs and acknowledgments combined in a C-element so that the register will acknowledge

only after every bit in the register acknowledges. This configuration, shown in Figure 35, includes

an eight bit wide Q-register and a five bit wide Q-register, as well as a single four phase Q-flop.

The five bit wide Q-register includes a sampling feature similar to that in the mutual exclusion
*: element from section 2.5.. For normal operation of that Q-register, the sample input should be tied

high.

The two phase Q-flop configuration of Parts-R-Us includes two two phase Q-registers; one eight
bits wide and the other seven bits wide. This is shown in Figure 36. As in the four phase case the

*' input requests are shared and the acknowledgments are combined into a C-element.

3. Design and Testing

Parts-R-Us was designed during spring semester 1986. The layout was done using the Magic
layout program from U.C. Berkeley. The chip was also specified using the Net circuit description

language. The Net description was simulated with RNL, and the extracted netlist from the layout

was compared to the Net-generated netlist with Gemini. After this comparison it is not hard to
,| believe that the circuit that correctly ran the simulations is actually the same as the circuit drawn

in the layout. Parts-R-Us was designed using the Scalable CMOS design rules and was fabricated

through the MOSIS on run M67Y at lambda = 1.5 microns in August 1986 which results in a three

micron feature size. The chip uses a MOSIS standard 6800x6900 micron 40 pin pad frame.

Packaged chips arrived in late August 1986 and were test- I using a simple functional tester
designed that same summer [3,1]. The test programs for the simulation are written in CommonLISP

35

.A

4

bq

-~2 9.- -- - - f -

*DaO 4-Phase OpQaC

Dal -0-Flops ipQal
Da2 Qa1 22
Da3 256N0a3

Da4 OwQa4
DaQa5
Da6 3 WQa6

Da7 2 2 p.Qa7

Reqa 1 104apAcka

183

DbO 4-Phase o. bO
Dbl 0-Flops ipQbl

Db2 1637 moQb2

D0b3
10Qb4

Reqb

4 4phase0-Flop

D3iestes

Reqb AckTest
p'Shared with "b" set

.e of 0-Flops.

Figure 35: Four Phase Q-Flop Configuration

36

DaO 289 QaO
Dal 2 02Pae 8 Qal

Da2 6 10Q-Flps 7 Qa2
Da3 5 0 10,Qa3

Da4 24N5 a
Da5 23a4

20 2 0a6
Da7 10Qa7

Reqa -1.Acka

DbO 18 Ob3

Dbl 17 -2-Phase 38bib

Db2 10Qb2
Db3 136s-Qb3

Db4 143 oQb4
Db5 134i Qb5
Db6 133s.Qb6

Ackb

Figure 36: Two Phase Q-Flop Configuration

37

using a LISP package designed to describe tests. This package can drive both the RNL simulator
and the simple tester so that the exact same test program may be run on both. This procedureUt makes initial testing of the chips when they come back very easy since the test programs have
already been written.

While the functional tests of the packaged parts were 'cry encouraging, every type of part
included on Parts-R-Us was functional somewhere, the yield was a little disappointing. Of the
13 packaged parts tested, two were very close to completely functional, two were completely non-
functional, and the rest fell somewhere in between. A complete table of testing results can be seen

in Figure 37.

In addition to functional tests, some tests of the metastable properties of the Arbiters and
Q-flops were conducted. In the case of the two-way Arbiters, the two competing requests were
driven at very close to the same time into the Arbiter. One of the requests was driven through a
constant-impedance trombone-style variable delay line so that the relative arrival times of the two
requests could be carefully controlled. As the variable delay was adjusted the arbiter would decide

in favor of different requests and right at the decision point the grant signal would take longer to
resolve as the internal mutual exclusion element resolved from its metastable state.

* •For the Q-flops, the data and request inputs were driven through the same sort of system. When
the data and the request to sample happen very close to the same time, the acknowledge can be

seen on the oscilloscope to take longer to arrive. For the Q-registers, this procedure repeated for
..each bit of the register can verify that the large C-element that combines the acknowledgments of

each bit is actually operating correctly. That is, the delay slowly changing on each bit should make
the register acknowledgment take longer for some value of the delay.

Since it was possible to use the metastable test rig to get information about the metastable
exit properties of the circuits, the sampling feature included on the mutual exclusion element and
four phase Q-fiops was not used at all. Parts-R-Us does not contain any other on-chip circuitry for
testing. While the test sequences used for the functional test were rather ad hoc, the individual
modules on Parts-R-Us are small and don't really contain much internal state that would be useful
for testing. Most of the state of the modules is visible from the outputs. A more careful testing
strategy in which all internal nodes of a module are exercised should be done but the completed
functional tests are still fairly convincing. Since there is some extra space on the chip, future
versions of Parts-R-Us could also include self-test circuitry.

4. Conclusions

While the yield was not great for this run of Parts-R-Us, the fact that every part worked on at
least one of the packaged parts indicates that the design is probably not at fault. There are enough

.0. parts available on the 13 chips to build small circuits, although only one circuit has been built to

date. A circuit that uses the C-types from the C-type configuration to build a one bit wide, eight
bit deep four wire FIFO was built in December 1986.

Parts-R-Us has demonstrated that the asynchronous building blocks it contains actually work
and can be used to build small asynchronous control circuits. The packaged chips are available to

interested persons to use for prototyping circuits.

".. -

1q: a
:?38

_____ __________ Individual Chilp Results _________

Ctype -Call - Toggle Select FIFO 4pQ 2pQ Arbit
Chip cccccddffff ccccc 1 tt ttc c cc ssssss f c cc qqq qq aamcc %

1234S121234 12345 123451234 123456 1123 851 87 12 112 OK
1 xxxxxxxxxxx fx xxxxxxx xx x xx x x 57

2 X xx xxxxxx x xxxx x x xxx xx xx 40%
i3 x xx xxxxxx xxx xx x xx xx x x x x xx 55%

4 , x xx xxx xxxxx xxxxxx x 40%
5 xxxxx x xx xxx x xxxx xxx x x 46%
6 x x xxxxx x x xx xx x x xx x x x x 46%
7 xx xxxxxxxx xx x xxxxxxx x xxxxxx xx x x x x 73%
8 xxxxxxxxxxx xxxxx xxxxxxxxx xxxxxx xxxx xxx x xxxxx 98%
9 0%
10 xxxxxxxx xxx x xx xxx x xx 44%

111 xxxxxxxxxxx xxxxx xxxxxxxxx xxxxxx xxxx xxx x xxxxx 98%
12 x x x x x xxx x xx x 27%

13_ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ 0%

Legend. x =The part passed its functional tests

_________OverallChipResults

Conigraion_________]Total]Total Y
CofgrainPart Name Possible Woki g Good

C-type C-type 52 28 54%
C-type xor 78 54 69%
Call 2-way call 52 23 44%o
Call 4-way call 1.3 5 38%
Toggle toggle 65 33 5T/o-
Toggle C-type 35 17 49%
Select 2-way select 65 22 34%
Select 4-way select 13 9 69%
FIFO register 13 3 23%
FIFO C-element 39 19 49%
4-Phase Q 8-wide Q-reg 13 5 38

(.4-Phase Q 5-wide Q-reg 13 5 38%
4-Phase Q Q-flop 13 6 46%
2-Phase Q 8-wide Q-reg 13 4 31%
2-Phase Q 7-wide Q-reg 13 0 0%
Arbiter arbiter 26 9 35%o

*Arbiter mutex 13 4 31%
Arbiter 2-way call 26 9 35%

Figure 37: Test Results of the 8/86 Version of Parts-R-Us

39

BIBLIOGRAPHY

I1 Erik Brunvand and Ivan Sutherland An Asynchronous Q-Bus Interface. Technical Report 4677,

Sutherland, Sproull and Associates, 1986

2r F U. Rosenberger, C E. Molnar, T J Chaney, and T.P. Fang. Q-Modules: Internally Clocked

Delay-Insensitive Modules. Technical Report, Washington University, St. Louis, 1985. To

appear in IEEE Transactions on Computers.

31 Bob Sproull and Ivan Sutherland. A Simple Tester. Technical Report 4676, Sutherland, Sproull

and Associates, 1986.

*4! Robert F. Sproull and Ivan E Sutherland. Asynchronous Systems. Technical Report 4706,
4707, 4708, Sutherland, Sproull and Associates, 1986.

5 Robert F. Sproull, Ivan E. Sutherland, Charles E. Molnar, and Edward H. Frank. Asynchronous
Systems. Technical Report 3441, Sutherland, Sproull and Associates, 1985.

'61 Ivan Sutherland, Bob Sproull, and Ian Jones. Standard Asynchronous Modules. Technical

Report 4662, Sutherland, Sproull and Associates, 1986.

44

,

E"

hi40

I,

- ."

"f.

1~
j.

1*

0;

4
4

.. r *'* S S S 0 5 0 0 0 0 S U 0:6 :~
* ~ -

9'-

~

